1

Preliminaries

1. Sets and n-tuples

We shall often be dealing with sets of objects of some definite kind.

Thinking of a collection of entities as a set simply amounts to a decision to

regard the whole collection as a single object. We shall use the word class

as synonymous with set. In particular we write N for the set of natural

numbers 0,1,2,3,.... In this book the word number will always mean

natural number except in contexts where the contrary is explicitly stated.
We write

aes
to mean that a belongs to § or, equivalently, is a member of the set S, and

a&sS

to mean that a does not belong to S. It is useful to speak of the empty set,
written J, which has no members. The equation R = §, where R and §
are sets, means that R and S are identical as sets, that is, that they have
exactly the same members. We write R C S and speak of R as a subset of
S to mean that every element of R is also an element of S. Thus, R = § if
and only if R C § and S ¢ R. Note also that for any set R, &J € R and
R C R. We write R C § to indicate that R € § but R # S. In this case R

1

2 Chapter 1 Preliminaries

is called a proper subset of S. If R and S are sets, we write R U S for the
union of R and S, which is the collection of all objects which are members
of either R or § or both, R N S, the intersection of R and §, is the set of
all objects that belong to both R and S. R — §, the set of all objects that
belong to R and do not belong to S, is the difference between R and S. S
may contain objects not in R. Thus R — S = R — (R N §). Often we will
be working in contexts where all sets being considered are subsets of some
fixed set D (sometimes called a domain or a universe). In such a case we
write § for D — 8, and call S the complement of S. Most frequently we
shall be writing S for N — S. The De Morgan identities

RUS=RNS,
RNS=RUS

are very useful; they are easy to check and any reader not already familiar
with them should do so. We write

{a,,a,,...,a,}

for the set consisting of the n objects a,,a,,...,a,. Sets that can be
written in this form as well as the empty set are called finite. Sets that are
not finite, e.g., N, are called infinite. It should be carefully noted that a
and {a} are not the same thing. In particular, @ € S is true if and only if
{a} c S. Since two sets are equal if and only if they have the same
members, it follows that, for example, {a, b, c} = {a, ¢, b} = {b, a, c}. That
is, the order in which we may choose to write the members of a set is
irrelevant. Where order is important, we speak instead of an n-tuple or a
list. We write n-tuples using parentheses rather than curly braces:

(a,,...,a,).

Naturally, the elements making up an r-tuple need not be distinct. Thus
(4,1,4,2) is a 4-tuple. A 2-tuple is called an ordered pair, and a 3-tuple is
called an ordered triple. Unlike the case for sets of one object, we do not
distinguish between the object a and the 1-tuple (a). The crucial property of
n-tuples is

(ay,a5,...,a,) =(b;,b,,....,b)
if and only if
a =b,, a, =b,, cens and a,=b,.

IfS,,S,,...,S, are given sets, then we write §; X §, X --- X §, for the
set of all n-tuples (a,,a,,...,a,) such that a, € S,,a, € S,,...,a, € S,.

2. Functions 3

S X §, X -+ X8, is sometimes called the Cartesian product of
$1,8,,...,5,. Incase §;, =S5, = - =S, =8 we write S” for the Carte-
sian product §; X §, X -+ X §,.

2. Functions

Functions play an important role in virtually every branch of pure and
applied mathematics. We may define a function simply as a set f, all of
whose members are ordered pairs and that has the special property

(a,b) efand (a,c) €f implies b =c.

However, intuitively it is more helpful to think of the pairs listed as the
rows of a table. For f a function, one writes f(a) = b to mean that
(a, b) € f; the definition of function ensures that for each a there can be
at most one such b. The set of all a such that (a, b) € f for some b is
called the domain of f. The set of all f(a) for a in the domain of f is
called the range of f.

As an example, let f be the set of ordered pairs (n,n?) for n € N.
Then, for each n € N, f(n) = n?. The domain of f is N. The range of f is
the set of perfect squares.

Functions f are often specified by algorithms that provide procedures
for obtaining f(a) from a. This method of specifying functions is particu-
larly important in computer science. However, as we shall see in Chapter
4, it is quite possible to possess an algorithm that specifies a function
without being able to tell which elements belong to its domain. This makes
the notion of a so-called partial function play a central role in computabil-
ity theory. A partial function on a set S is simply a function whose domain
is a subset of S. An example of a partial function on N is given by g(n)
= Vn, where the domain of g is the set of perfect squares. If f is a partial
function on S and a € S, then we write f(a)| and say that f(a) is defined
to indicate that a is in the domain of f; if a is not in the domain of f, we
write f(a)? and say that f(a) is undefined. If a partial function on S has
the domain S, then it is called total. Finally, we should mention that the
empty set J is itself a function. Considered as a partial function on some
set S, it is nowhere defined.

For a partial function f on a Cartesian product §; X §, X -+ X §,, we
write f(a,,...,a,) rather than f((a,,...,a,)). A partial function f on a
set 8" is called an n-ary partial function on S, or a function of n variables
on S. We use unary and binary for 1-ary and 2-ary, respectively. For n-ary
partial functions, we often write f(x,,...,x,) instead of f as a way of
showing explicitly that f is n-ary.

4 Chapter 1 Preliminaries

Sometimes it is useful to work with particular kinds of functions. A
function f is one—one if, for all x,y in the domain of f, f(x) = f(y)
implies x = y. Stated differently, if x # y then f(x) # f(y). If the range of
f is the set S, then we say that f is an onto function with respect to §, or
simply that f is onto S. For example, f(n) = n® is one-one, and f is onto
the set of perfect squares, but it is not onto N.

We will sometimes refer to the idea of closure. If S is a set and f is a
partial function on S, then § is closed under f if the range of f is a subset
of §. For example, N is closed under f(n) = n?, but it is not closed under
h(n) = Yn (where & is a total function on N).

3. Alphabets and Strings

An alphabet is simply some finite nonempty set A of objects called
symbols. An n-tuple of symbols of A4 is called a word or a string on A.
Instead of writing a word as (a,, a,,...,a,) we write simply a,a, - a,. If
u =aa, -+ a,, then we say that n is the length of u and write |u| = n.
We allow a unique null word, written 0, of length 0. (The reason for using
the same symbol for the number zero and the null word will become clear
in Chapter 5.) The set of all words on the alphabet A is written 4*. Any
subset of A* is called a language on A or a language with alphabet A. We
do not distinguish between a symbol a € 4 and the word of length 1
consisting of that symbol. If u,v € A*, then we write uv for the word
obtained by placing the string v after the string u. For example, if
A ={a,b,c}, u=bab, and v = caa, then

—

uv = babcaa and vu = caabab.

Where no confusion can result, we write uv instead of uv. It is obvious
that, for all u,

and that, for all u, v, w,
ulow) = (uv)w.

Also, if either uv = uw or vu = wu, then v = w.
If u is a string, and n € N, n > 0, we write

L
n

We also write ul” = 0. We use the square brackets to avoid confusion with
numerical exponentiation.

4, Predicates 5

If u € A*, we write u® for u written backward; ie., if u = a;a, - a,,
for a,,...,a, € A, then u® =a, - a,a,. Clearly, 0% = 0 and (u)? =
vRu® for u,v € A*.

4. Predicates

By a predicate or a Boolean-valued function on a set S we mean a total
function P on S such that for each a € S, either

P(a) = TRUE or P(a) = FALSE,

where TRUE and FALSE are a pair of distinct objects called truth values.
We often say P(a) is true for P(a) = TRUE, and P(a) is false for
P(a) = FALSE. For our purposes it is useful to identify the truth values
with specific numbers, so we set

TRUE =1 and FALSE = 0.

Thus, a predicate is a special kind of function with values in N. Predicates
on a set S are usually specified by expressions which become statements,
either true or false, when variables in the expression are replaced by
symbols designating fixed elements of S. Thus the expression

x <S5

specifies a predicate on N, namely,

1 if x=0,1,2,3,4
P(x) = {0 otherwise.
Three basic operations on truth values are defined by the tables in Table
4.1. Thus if P and Q are predicates on a set S, there are also the
predicates ~P, P & Q, P V Q. ~P is true just when P is false; P & Q is
true when both P and Q are true, otherwise it is false; P VvV @ is true when
either P or Q or both are true, otherwise it is false. Given a predicate P

Table 4.1
J4 ~p P q p&q pVgq
1 1 1 1 1
1 0 0 1 0 1
1 0 0 1
0 0 0 0

6 Chapter 1 Preliminaries

on a set S, there is a corresponding subset R of S, namely, the set of all
elements a € S for which P(a) = 1. We write

R = {a € S|P(a)}.
Conversely, given a subset R of a given set S, the expression
X E€R

defines a predicate on S, namely, the predicate defined by

{1 if xeR
P(")_{o if xR

Of course, in this case,
R = {x € S|P(x)}.

The predicate P is called the characteristic function of the set R. The close
connection between sets and predicates is such that one can readily
translate back and forth between discourse involving one of these notions
and discourse involving the other. Thus we have

(xeSIPX& O} ={xeSIPx)}n{xeS|Iox)],
{xeSIP(x) Vo)) ={xeSIPx)}U{xeSlI Q)
{(xeS| ~Px)}=8S-{xeS|P(x)}.

To indicate that two expressions containing variables define the same
predicate we place the symbol <« between them. Thus,

x<S5ex=0Vvx=1Vvx=2Vx=3Vx=4.

The De Morgan identities from Section 1 can be expressed as follows in
terms of predicates on a set S:

P(x) & Q(x) & ~(~P(x) v ~Q(x)),
P(x) vV Q(x) & ~(~P(x) & ~Q(x)).

5. Quantifiers

In this section we will be concerned exclusively with predicates on N™ (or
what is the same thing, m-ary predicates on N) for different values of m.
Here and later we omit the phrase “on N” when the meaning is clear.

5. Quantifiers 7

Thus, let P(t, x,,..., x,) be an (n + 1)-ary predicate. Consider the predi-
cate O(y, x,,..., x,) defined by

oy, xy,...,x,) @ PO, x;,...,x,) VP, x,....,x,)
Ve VPY, X ,..,%,).

Thus the predicate Q(y, x,,..., x,) is true just in case there is a value of
t <y such that P(t,x,,..., x,) is true. We write this predicate Q as

('_-'It)SyP(t,x1 eees X))l

The expression “(3¢)_ ,” is called a bounded existential quantifier. Similarly,
we write (V£) _, P(¢,x,..., x,) for the predicate

PO, x;,....,x)& P(L,x;,...,x)& & P(y,x;,...,x,).

sy Ay

This predicate is true just in case P(t,x,,...,x,) is true for all ¢t <y.
The expression “(Vt) _,” is called a bounded universal quantifier. We also
write (3), P(¢,x,,...,x,) for the predicate that is true just in
case P(t,x,,...,x,) is true for at least one value of ¢ <y and
V), P(t, x,...,x,) for the predicate that is true just in case
P(t,x,,...,x,) is true for all values of ¢ < y.

We write

Q(xy,...,x,) = ADPU, x{,...,x,)

for the predicate which is true if there exists some ¢t € N for which
P(t, x,,...,x,) is true. Similarly, (VOP(, x,,...,x,) is true if
P(t, x;,...,x,) is true for all € N.

The following generalized De Morgan identities are sometimes useful:

~(Elt)5yP(t,x1 eees Xy) © (Vt)sy ~P(t,xy,...,%,),
~@)P,xy,...,x,) o (V) ~P(t,x,,...,x,).
The reader may easily verify the following examples:
Ay x+y=4) ox <4,
@A)x+y=4) o Qy) (x+y=4),

Wy xy=0) «x =0,
@A, x+y=dHeo(x+z24&x<4).

8 Chapter 1 Preliminaries
6. Proof by Contradiction

In this book we will be calling many of the assertions we make theorems
(or corollaries or lemmas) and providing proofs that they are correct. Why
are proofs necessary? The following example should help in answering this
question.

Recall that a number is called a prime if it has exactly two distinct
divisors, itself and 1. Thus 2, 17, and 41 are primes, but 0, 1, 4, and 15 are
not. Consider the following assertion:

n® —n + 41is prime for all n € N.

This assertion is in fact false. Namely, for n = 41 the expression becomes

412 — 41 + 41 = 412,

which is certainly not a prime. However, the assertion is true (readers with
access to a computer can easily check this!) for all n < 40. This example
shows that inferring a result about all members of an infinite set (such as
N) from even a large finite number of instances can be very dangerous. A
proof is intended to overcome this obstacle.

A proof begins with some initial statements and uses logical reasoning to
infer additional statements. (In Chapters 12 and 13 we shall see how the
notion of logical reasoning can be made precise; but in fact, our use of
logical reasoning will be in an informal intuitive style.) When the initial
statements with which a proof begins are already accepted as correct, then
any of the additional statements inferred can also be accepted as correct.
But proofs often cannot be carried out in this simple-minded pattern. In
this and the next section we will discuss more complex proof patterns.

In a proof by contradiction, one begins by supposing that the assertion
we wish to prove is false. Then we can feel free to use the negation of what
we are trying to prove as one of the initial statements in constructing a
proof. In a proof by contradiction we look for a pair of statements
developed in the course of the proof which contradict one another. Since
both cannot be true, we have to conclude that our original supposition was
wrong and therefore that our desired conclusion is correct.

We give two examples here of proof by contradiction. There will be
many in the course of the book. Our first example is quite famous. We
recall that every number is either even (i.e., = 2n for some n € N) or odd
(i.e., =2n + 1 for some n € N). Moreover, if m is even, m = 2n, then
m? = 4n? = 2-2n? is even, while if m is odd, m = 2n + 1, then m® =
4n? + 4n + 1=22n*> + 2n) + 1 is odd. We wish to prove that the
equation

2 = (m/n)’ (6.1)

7. Mathematical Induction 9

has no solution for m, n € N (that is, that V2 is not a “rational” number).
We suppose that our equation has a solution and proceed to derive a
contradiction. Given our supposition that (6.1) has a solution, it must have
a solution in which m and n are not both even numbers. This is true
because if m and n are both even, we can repeatedly “cancel” 2 from
numerator and denominator until at least one of them is odd. On the
other hand, we shall prove that for every solution of (6.1) m and n must
both be even. The contradiction will show that our supposition was false,
i.e., that (6.1) has no solution.

It remains to show that in every solution of (6.1), m and n are both
even. We can rewrite (6.1) as

m? = 2n?,
which shows that m? is even. As we saw above this implies that m is even,
say m = 2k. Thus, m? = 4k? = 2n?, or n* = 2k?. Thus, n? is even and
hence n is even. u

Note the symbol B, which means “the proof is now complete.”
Our second example involves strings as discussed in Section 3.

Theorem 6.1. Let x € {a, b}* such that xa = ax. Then x = a!"! for some
neN.

Proof. Suppose that xa = ax but x contains the letter b. Then we can
write x = al"lbu, where we have explicitly shown the first (i.e., leftmost)
occurrence of b in x. Then

a™bua = aa™bu = a'"+ py.

Thus,

bua = abu.
But this is impossible, since the same string cannot have its first symbol be
both b and a. This contradiction proves the theorem.]
Exercises

1. Prove that the equation (p/¢q)* = 3 has no solution for p,q € N.

2. Prove that if x € {a, b}* and abx = xab, then x = (ab)!"! for some
n €N.

7. Mathematical Induction

Mathematical induction furnishes an important technique for proving
statements of the form (Vn)P(n), where P is a predicate on N. One

10 Chapter 1 Preliminaries

proceeds by proving a pair of auxiliary statements, namely,

P(0)
and
(Vn)(If P(n) then P(n + 1)). (7.1)

Once we have succeeded in proving these auxiliary statements we can
regard (Vn)P(n) as also proved. The justification for this is as follows.

From the second auxiliary statement we can infer each of the infinite set
of statements:

If P(0) then P(1),
If P(1) then P(2),
If P(2) then P(3),... .

Since we have proved P(0), we can infer P(1). Having now proven P(1) we
can get P(2), etc. Thus, we see that P(n) is true for all » and hence
(Vn)P(n) is true.

Why is this helpful? Because sometimes it is much easier to prove (7.1)
than to prove (Vn)P(n) in some other way. In proving this second auxiliary
proposition one typically considers some fixed but arbitrary value k of n
and shows that if we assume P(k) we can prove P(k + 1). P(A) is then
called the induction hypothesis. This methodology enables us to use P(k) as
one of the initial statements in the proof we are constructing.

There are some paradoxical things about proofs by mathematical induc-
tion. One is that considered superficially, it seems like an example of
circular reasoning. One seems to be assuming P(k) for an arbitrary k,
which is exactly what one is supposed to be engaged in proving. Of course,
one is not really assuming (Vn)P(n). One is assuming P(k) for some
particular k in order to show that P(k + 1) follows.

It is also paradoxical that in using induction (we shall often omit the
word mathematical), it is sometimes easier to prove statements by first
making them “stronger.” We can put this schematically as follows. We
wish to prove (Vr)P(n). Instead we decide to prove the stronger assertion
(Va)(P(n) & Q(n)) (which of course implies the original statement). Prov-
ing the stronger statement by induction requires that we prove

P(0) & Q(0)
and
(Ym)IfP(n) & Q(n) then P(n + 1) & Q(n + 1)].

In proving this second auxiliary statement, we may take P(k)& Q(k) as
our induction hypothesis. Thus, although strengthening the statement to

7. Mathematical Induction 11

be proved gives us more to prove, it also gives us a stronger induction
hypothesis and, therefore, more to work with. The technique of deliber-
ately strengthening what is to be proven for the purpose of making proofs
by induction easier is called induction loading.

It is time for an example of a proof by induction. The following is useful
in doing one of the exercises in Chapter 6.

Theorem 7.1. For all n € N we have ¥7_(2i + 1) = (n + 1)?

Proof. For n = 0, our theorem states simply that 1 = 12, which is true.
Suppose the result known for n = k. That is, our induction hypothesis is

Qi+ 1) =(k+1)°.

™M=

i=0

Then
k+1 k
YQi+1D=Y Qi+ +2k+1)+1
i=0 i=0
=(k+ 1)’ +2k+ 1 +1
= (k + 2)°.
But this is the desired result for n = k + 1. [|

Another form of mathematical induction that is often very useful is
called course-of-values induction or sometimes complete induction. In the
case of course-of-values induction we prove the single auxiliary statement

)l If (Ym) P(m) then P(n)], (7.2)

m<n

and then conclude that (Vn)P(n) is true. A potentially confusing aspect of
course-of-values induction is the apparent lack of an initial statement
P(0). But in fact there is no such lack. The case n = 0 of (7.2) is

If (Ym),, ., P(m) then P(0).

But the “induction hypothesis” (Vm),, ., P(m) is entirely vacuous because
there is no m € N such that m < 0. So in proving (7.2) for n = 0 we really
are just proving P(0). In practice it is sometimes possible to give a single
proof of (7.2) that works for all n including n = 0. But often the case
n = 0 has to be handled separately.

To see why course-of-values induction works, consider that, in the light
of what we have said about the n = 0 case, (7.2) leads to the following

12 Chapter 1 Preliminaries

infinite set of statements:

P(0),

If P(0) then P(1),

IfP(0) & P(1) then P(2),

If P(0) & P(1) & P(2) then P(3),

Here is an example of a theorem proved by course-of-values induction.

Theorem 7.2. There is no string x € {a, b}* such that ax = xb.

Proof. Consider the following predicate: If x € {a, b}* and |x| = n, then
ax # xb. We will show that this is true for all n € N. So we assume it true
for all m < k for some given k and show that it follows for k. This proof
will be by contradiction. Thus, suppose that |x| = k and ax = xb. The
equation implies that a is the first and b the last symbol in x. So, we can
write x = aub. Then

aaub = aubb,
ie.,
au = ub.

But |u| < [x|. Hence by the induction hypothesis au # ub. This contradic-
tion proves the theorem. |

Proofs by course-of-values induction can always be rewritten so as to
involve reference to the principle that if some predicate is true for some
element of N, then there must be a least element of N for which it is true.
Here is the proof of Theorem 7.2 given in this style.

Proof. Suppose there is a string x € {a, b}* such that ax = xb. Then
there must be a string satisfying this equation of minimum length. Let x
be such a string. Then ax = xb, but, if |u| < |x|, then au # ub. However,
ax = xb implies that x = aub, so that au = ub and |u| < |x|. This contra-
diction proves the theorem. |

Exercises

1. Prove by mathematical induction that 7_, i = n(n + 1)/2.

2. Here is a “proof” by mathematical induction that if x,y € N, then
x =y. What is wrong?

7. Mathematical induction 13

Let

X ifx>y

max(x, y) = {y otherwise

for x, y € N. Consider the predicate
Vx)(YYLIf max(x,y) = n, thenx =y].

For n = 0, this is clearly true. Assume the result for n = k&, and let
max(x,y) =k + 1.Let x;, =x — 1, y, =y — 1. Then max(x,, y,) = k.
By the induction hypothesis, x; =y, and therefore x =x; + 1 =
yyt+1=y.

3. Here is another incorrect proof that purports to use mathematical
induction to prove that all flowers have the same color! What is
wrong?

Consider the following predicate: If S is a set of flowers containing
exactly n elements, then all the flowers in § have the same color. The
predicate is clearly true if n = 1. We suppose it true for n = k& and
prove the result for n = k + 1. Thus, let S be a set of k + 1 flowers. If
we remove one flower from § we get a set of k& flowers. Therefore, by
the induction hypothesis they all have the same color. Now return the
flower removed from S and remove another. Again by our induction
hypothesis the remaining flowers all have the same color. But now
both of the flowers removed have been shown to have the same color
as the rest. Thus, all the flowers in .S have the same color.

Show that there are no strings x, y € {a, b}* such that xay = ybx.

Give a “one-line” proof of Theorem 7.2 that does not use mathemati-
cal induction.

